اختبار المشتقة الثانية لنقط النهايات العظمى والصغرى المحلية
باستخدام اختبار المشتقة الثانية إن أمكن، جد النهايات المحلية للدوال الآتية f(x)=6x-3x^2-1
باستخدام اختبار المشتقة الثانية إن أمكن، جد النهايات المحلية للدوال الآتية f(x)=x-4/x^2,x!=0
حل مثال باستخدام اختبار المشتقة الثانية إن أمكن، جد النهايات المحلية للدوال الآتية f(x)=x-4/x^2,x!=0
باستخدام اختبار المشتقة الثانية إن أمكن، جد النهايات المحلية للدوال الآتية f(x)=x^3-3x^2-9x
باستخدام اختبار المشتقة الثانية إن أمكن، جد النهايات المحلية للدوال الآتية f(x)=4-(x+1)^4
حل مثال باستخدام اختبار المشتقة الثانية إن أمكن، جد النهايات المحلية للدوال الآتية f(x)=4-(x+1)^4
لتكن f(x)=x^2+a/x,x≠0,a∈R فجد قيمة a علما أن الدالة تمتلك نقطة انقلاب عند x=1 ثم بين أن الدالة f لاتمتلك نهاية عظمى محلية
عين قيمتي الثابتين b,a لكي يكون لمنحني الدالة y=x^3+ax^2+bx نهاية عظمى محلية عند x=-1 ونهاية صغرى محلية عند x=2 ثم جد نقطة الانقلاب
إذا كان منحنى الدالة f(x)=ax^3+bx^2+c مقعر في {x:x<1} ومحدب في {x:x>1} ويمس المستقيم y+9x=28 عند النقطة (3,1) فجد قيم الأعداد الحقيقية c,b,a
حل مثال إذا كان منحنى الدالة f(x)=ax^3+bx^2+c مقعر في {x:x<1} ومحدب في {x:x>1} ويمس المستقيم y+9x=28 عند النقطة (3,1) فجد قيم الأعداد الحقيقية c,b,a
إذا كان للدالة f(x)=ax^3+3x^2+c نهاية عظمى محلية تساوي 8، ونقطة انقلاب عند x=1 فجد قيمة a,c∈R
لتكن f(x)=ax^2-6x+b حيث أن a∈{-4,8},b∈R جد قيمة a اذا كانت : الدالة f محدبة
إذا كانت (2,6) نقطة حرجة لمنحني الدالة f(x)=a-(x-b)^4 فجد قيمة a,b∈R وبين نوع النقطة الحرجة
إذا كانت 6 تمثل نهاية صغرى محلية لمنحني الدالة f(x)=3x^2-x^3+c فجد قيمة c∈R ثم جد معادلة مماس المنحنى في نقطة انقلابه
لتكن f(x)=x^2-a/x,a∈R/{0},x≠0 برهن من أن الدالة f لا تمتلك نهاية عظمى محلية
المستقيم 3x-y=7 يمس المنحنى y=ax^2+bx+c عند (2,-1) وكانت له نهاية محلية عند x=1/2 جد قيمة a,b,c∈R وما نوع النهاية
إذا كان f(x)=ax^3+bx^2+cx وكانت f مقعرة ∀x>1 ومحدبة ∀x<1 وللدالة f نقطة نهاية عظمى محلية هي ( 1,5 -) فجد قيمة الثوابت a,b,c∈R
إذا كان f(x)=ax^3+bx^2+cx, g(x)=1-12x وكان كل من g,f متماسان عند نقطة انقلاب المنحنى f وهي (1,-11) فجد قيمة الثوابت a,b,c∈R