لمتابعة التصفح يجب عليك تسجيل الدخول
دخول:
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
الرياضيات أحيائي
الفصل الثاني: القطوع المخروطية
2-2 القطع المكافئ
القطع المكافئ - الرياضيات أحيائي - سادس اعدادي
الفصل الأول: الأعداد المركبة
1-1 الحاجة إلى توسيع مجموعة الأعداد الحقيقية
1-2 العمليات على مجموعة الأعداد المركبة
1-3 مرافق العدد المركب
1-4 الجذور التربيعية للعدد المركب
1-5 حل المعادلة التربيعية في (c)
1-6 التمثيل الهندسي للأعداد المركبة
1-7 الصيغة القطبية للعدد المركب
1-8 مبرهنة ديموافر
الفصل الثاني: القطوع المخروطية
القطوع المخروطية وأهمية دراستها
2-1 القطع المخروطي
2-2 القطع المكافئ
2-3 القطع الناقص
2-4 القطع الزائد
الفصل الثالث: تطبيقات التفاضل
3-1 المشتقات ذات الرتب العليا
3-2 المعادلات المرتبطة
3-3 مبرهنتا رول والقيمة المتوسطة
3-4 اختيار التزايد والتناقص للدالة باستخدام المشتقة الأولى
3-5 النهاية العظمى والنهاية الصغرى
3-6 تقعر وتحدب المنحنيات ونقط الانقلاب
3-7 اختبار المشتقة الثانية لنقط النهايات العظمى والصغرى المحلية
3-8 رسم المخطط البياني للدالة
3-9 تطبيقات عملية على القيم العظمى أو الصغرى
الفصل الرابع: التكامل
4-1 النظرية الأساسية للتكامل - الدالة المقابلة
4-2 خواص التكامل المحدد
4-3 التكامل غير المحدد
4-4 اللوغارتم الطبيعي
4-5 إيجاد مساحة المنطقة المستوية
4-6 الحجوم الدورانية
الفصل الخامس: المعادلات التفاضلية الاعتيادية
5-1 مقدمة
5-2 حل المعادلة التفاضلية الاعتيادية
5-3 الحل الخاص والعام للمعادلة التفاضلية الاعتيادية
5-4 المعادلات التفاضلية الاعتيادية من المرتبة الأولى والدرجة الأولى
5-5 بعض طرق حل المعادلات التفاضلية
الفصل السادس: الهندسة الفضائية
6-1 تمهيد
6-2 الزاوية الزوجية والمستويات المتعامدة
6-3 الاسقاط العمودي على مستو
تمارين عامة
الفصل الأول: الأعداد المركبة
1-1 الحاجة إلى توسيع مجموعة الأعداد الحقيقية
1-2 العمليات على مجموعة الأعداد المركبة
1-3 مرافق العدد المركب
1-4 الجذور التربيعية للعدد المركب
1-5 حل المعادلة التربيعية في (c)
1-6 التمثيل الهندسي للأعداد المركبة
1-7 الصيغة القطبية للعدد المركب
1-8 مبرهنة ديموافر
الفصل الثاني: القطوع المخروطية
القطوع المخروطية وأهمية دراستها
2-1 القطع المخروطي
2-2 القطع المكافئ
2-3 القطع الناقص
2-4 القطع الزائد
الفصل الثالث: تطبيقات التفاضل
3-1 المشتقات ذات الرتب العليا
3-2 المعادلات المرتبطة
3-3 مبرهنتا رول والقيمة المتوسطة
3-4 اختيار التزايد والتناقص للدالة باستخدام المشتقة الأولى
3-5 النهاية العظمى والنهاية الصغرى
3-6 تقعر وتحدب المنحنيات ونقط الانقلاب
3-7 اختبار المشتقة الثانية لنقط النهايات العظمى والصغرى المحلية
3-8 رسم المخطط البياني للدالة
3-9 تطبيقات عملية على القيم العظمى أو الصغرى
الفصل الرابع: التكامل
4-1 النظرية الأساسية للتكامل - الدالة المقابلة
4-2 خواص التكامل المحدد
4-3 التكامل غير المحدد
4-4 اللوغارتم الطبيعي
4-5 إيجاد مساحة المنطقة المستوية
4-6 الحجوم الدورانية
الفصل الخامس: المعادلات التفاضلية الاعتيادية
5-1 مقدمة
5-2 حل المعادلة التفاضلية الاعتيادية
5-3 الحل الخاص والعام للمعادلة التفاضلية الاعتيادية
5-4 المعادلات التفاضلية الاعتيادية من المرتبة الأولى والدرجة الأولى
5-5 بعض طرق حل المعادلات التفاضلية
الفصل السادس: الهندسة الفضائية
6-1 تمهيد
6-2 الزاوية الزوجية والمستويات المتعامدة
6-3 الاسقاط العمودي على مستو
تمارين عامة
القطع المكافئ
معادلة القطع المكافئ الذي بؤرته تنتمي لمحور السينات
الجدول الاتي يمثل المعادلة القياسية
مثال 1 جد البؤرة ومعادلة دليل القطع المكافئ
مثال 2 جد معادلة القطع المكافئ اذا علم
مثال 3 جد بؤرة ومعادلة دليل القطع المكافئ
تابع مثال 3 جد بؤرة ومعادلة دليل القطعالمكافئ
مثال 4 باستخدام التعريف جد معادلة القطع المكافئ اذا علم ان بؤرته
معادلة القطع المكافئ الذي بؤرته تنتمي لمحور الصادات
الجدول الاتي يمثل المعادلة القياسية
مثال 6 جد معادلة القطع المكافئ اذاعلم ان
مثال 5 جد البؤرة ومعادلة القطع المكافئ
مثال 8 جد معادلة القطع المكافئ الذي رأسه نقطة الاصل ويمر دليل القطع المكافئ بالنقطة
مثال 7 جد معادلة القطع المكافئ الذي يمر بالنقطتين
باستخدام التعريف جد معادلة القطع المكافئ
جد قيمة A ثم جد بؤرته ودليله وأرسم القطع
جد معادلة القطع المكافئ الذي يمر بالقطتين
في كل مما يأتي جد البؤرة والرأس ومعادلتي المحور والدليل للقطع المكافئ
جد المعادلة للقطع المكافئ في كل مما يآتي ثم ارسم المنحني البياني لها
الإبلاغ
الإبلاغ عن خطأ
X
تسجيل الدخول بواسطة