يمكن الحصول على معادلة القطع الزائد الذي محوره الحقيقي يوازي محور الصادات ومركزه نقطة(h,k)
إيجاد مركز القطع الزائد وبؤرتاه ورأساه وطول المحورين
جد إحداثيا المركز والبؤرتين والرأسين وطول المحورين والإختلاف المركزي للقطع الزائد الذي معادلته (x+2)^2/9-(y-1)^2/4=1
عين كل من البؤرتين والرأسين ثم جد طول كل من المحورين والاختلاف المركزي للقطوع الزائدة الآتية 12x^2-4y^2=48
اكتب معادلة القطع الزائد في الحالات الآتية ثم ارسم القطع البؤرتان هما النقطتان (±5,0) ويتقاطع مع محور السينات عند x=±3 ومركزه نقطة الأصل
جد باستخدام تعريف معادلة القطع الزائد الذي مركزه نقطة الأصل وبؤرتيه (2√2,0),(-2√2,0) وينطبق محوراه على المحورين الإحداثيين والقيمة المطلقة للفرق بين بعدي أية نقطة عن بؤرتيه يساوي (4) وحدات
قطع زائد مركزه نقطة الأصل ومعادلته hx^2-ky^2=90 وطول محوره الحقيقي (6√2) وحدة وبؤرتاه تنطبقان على بؤرتي القطع الناقص الذي معادلته 9x^2+16y^2=576 جد قيمة كل من k,h التي تنتمي إلى مجموعة الاعدا
جد معادلة القطع الناقص الذي بؤرتاه هما بؤرتا القطع الزائد الذي معادلته x^2-3y^2=12 والنسبة بين طولي محوريه=5/3 ومركزه نقطة الأصل
جد معادلة القطع الزائد الذي بؤرتاه هما بؤرتي القطع الناقص x^2/9+y^2/25=1 ويمس دليل القطع المكافئ x^2+12y=0
النقطة (6,L)p تنتمي إلى القطع الزائد الذي مركزه نقطة الأصل ومعادلته x^2-3y^2=12 جد كلاً من أ. قيمة L
اكتب معادلة القطع الزائد الذي مركزه نقطة الأصل إذا علمت أن أحد رأسيه يبعد عن البؤرتين بالعددين 1,9 وحدات على الترتيب وينطبق محوراه على المحورين الإحداثيين
قطع زائد طول محوره الحقيقي (6) وحدات واحدى بؤرتيه هي بؤرة القطع المكافئ الذي رأسه نقطة الأصل ويمر بالنقطتين (1,-2√5),(1,2√5) جد معادلتي القطع المكافئ الذي رأسه نقطة الأصل والقطع الزائد الذي م