لمتابعة التصفح يجب عليك تسجيل الدخول
دخول:
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
الرياضيات العلمي
الفصل الرابع: التكامل
النظرية الأساسية للتكامل - الدالة المقابلة
النظرية الأساسية للتكامل الدالة المقابلة - الرياضيات العلمي - سادس اعدادي
الفصل الأول: الأعداد المركبة
الحاجة إلى توسيع مجموعة الأعداد الحقيقية
العمليات على مجموعة الأعداد المركبة
مرافق العدد المركب
الجذور التربيعية للعدد المركب
حل المعادلة التربيعية في (c)
الجذور التكعيبية للواحد الصحيح
التمثيل الهندسي للأعداد المركبة
الصيغة القطبية Form Polar للعدد المركب
مبرهنة ديمواڤر
الفصل الثاني: القطوع المخروطية
القطوع المخروطية وأهمية دراستها
القطع المخروطي
القطع المكافئ
انسحاب المحاور للقطع المكافئ
القطع الناقص
انسحاب المحاور للقطع الناقص
القطع الزائد
انسحاب محاور القطع الزائد
الفصل الثالث: تطبيقات التفاضل
المشتقات ذات الرتب العليا
المعدلات المرتبطة
مبرهنتا رول والقيمة المتوسطة
اختبار التزايد والتناقص للدالة باستخدام المشتقة الأولى
النهاية العظمى والنهاية الصغرى المحلية
تقعر وتحدب المنحنيات ونقط الانقلاب
اختبار المشتقة الثانية لنقط النهايات العظمى والصغرى المحلية
رسم المخطط البياني للدالة
تطبيقات عملية على القيم العظمى أو الصغرى
الفصل الرابع: التكامل
المناطق المحددة بمنحنيات
المجاميع العليا والمجاميع السفلى
تعريف التكامل
النظرية الأساسية للتكامل - الدالة المقابلة
خواص التكامل المحدد
التكامل غير المحدد
اللوغارتم الطبيعي
إيجاد مساحة المنطقة المستوية
الحجوم الدورانية
الفصل الخامس: المعادلات التفاضلية الاعتيادية
مقدمة
حل المعادلة التفاضلية الاعتيادية
الحل الخاص والعام للمعادلة التفاضلية الاعتيادية
المعادلات التفاضلية الاعتيادية من المرتبة الأولى والدرجة الأولى
بعض طرق حل المعادلات التفاضلية
الفصل السادس: الهندسة الفضائية
تمهيد
الزاوية الزوجية والمستويات المتعامدة
الاسقاط العمودي على مستوٍ
المجسمات
الفصل الأول: الأعداد المركبة
الحاجة إلى توسيع مجموعة الأعداد الحقيقية
العمليات على مجموعة الأعداد المركبة
مرافق العدد المركب
الجذور التربيعية للعدد المركب
حل المعادلة التربيعية في (c)
الجذور التكعيبية للواحد الصحيح
التمثيل الهندسي للأعداد المركبة
الصيغة القطبية Form Polar للعدد المركب
مبرهنة ديمواڤر
الفصل الثاني: القطوع المخروطية
القطوع المخروطية وأهمية دراستها
القطع المخروطي
القطع المكافئ
انسحاب المحاور للقطع المكافئ
القطع الناقص
انسحاب المحاور للقطع الناقص
القطع الزائد
انسحاب محاور القطع الزائد
الفصل الثالث: تطبيقات التفاضل
المشتقات ذات الرتب العليا
المعدلات المرتبطة
مبرهنتا رول والقيمة المتوسطة
اختبار التزايد والتناقص للدالة باستخدام المشتقة الأولى
النهاية العظمى والنهاية الصغرى المحلية
تقعر وتحدب المنحنيات ونقط الانقلاب
اختبار المشتقة الثانية لنقط النهايات العظمى والصغرى المحلية
رسم المخطط البياني للدالة
تطبيقات عملية على القيم العظمى أو الصغرى
الفصل الرابع: التكامل
المناطق المحددة بمنحنيات
المجاميع العليا والمجاميع السفلى
تعريف التكامل
النظرية الأساسية للتكامل - الدالة المقابلة
خواص التكامل المحدد
التكامل غير المحدد
اللوغارتم الطبيعي
إيجاد مساحة المنطقة المستوية
الحجوم الدورانية
الفصل الخامس: المعادلات التفاضلية الاعتيادية
مقدمة
حل المعادلة التفاضلية الاعتيادية
الحل الخاص والعام للمعادلة التفاضلية الاعتيادية
المعادلات التفاضلية الاعتيادية من المرتبة الأولى والدرجة الأولى
بعض طرق حل المعادلات التفاضلية
الفصل السادس: الهندسة الفضائية
تمهيد
الزاوية الزوجية والمستويات المتعامدة
الاسقاط العمودي على مستوٍ
المجسمات
النظرية الأساسية للتكامل - الدالة المقابلة
مبرهنة الدالة المقابلة
ملاحظة على الدالة المقابلة
إذا كانت f(x) دالة مستمرة على الفترة [1,5] بحيث دالة مقابلة للدالة f فجد ∫5 1f(x)dx
إذا كانت دالة مستمرة على الفترة [0,∏/2] وأن الدالة المقابلة للدالة f هي F:[0,∏/2]→R, F(x)=sin x فأوجد ∫∏/2 0 f(x)dx
أثبت فيما إذا كانت F:[1,3]→R, F(x)=x^3+2 دالة مقابلة للدالة f(x)=3x^2
أثبت أن الدالة F:R→R, F(x)=1/2sin 2x هي دالة مقابلة للدالة f:R→R, f(x)=cos 2x ثم أوجد ∫∏/4 0 cos 2x dx
جدول مساعد يبين الدالة f والدالة المقابلة لها F
أوجد ∫∏/4 0 sec^2 x dx
أوجد ∫∏/2 ∏/4 csc^2 x dx
أوجد ∫∏/3 0 sec x tan x dx
جد ∫3 1 x^3 dx
الإبلاغ
الإبلاغ عن خطأ
X
تسجيل الدخول بواسطة