لمتابعة التصفح يجب عليك تسجيل الدخول
دخول:
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
الرياضيات العلمي
الفصل الرابع: التكامل
اللوغارتم الطبيعي
اللوغارتم الطبيعي - الرياضيات العلمي - سادس اعدادي
الفصل الأول: الأعداد المركبة
الحاجة إلى توسيع مجموعة الأعداد الحقيقية
العمليات على مجموعة الأعداد المركبة
مرافق العدد المركب
الجذور التربيعية للعدد المركب
حل المعادلة التربيعية في (c)
الجذور التكعيبية للواحد الصحيح
التمثيل الهندسي للأعداد المركبة
الصيغة القطبية Form Polar للعدد المركب
مبرهنة ديمواڤر
الفصل الثاني: القطوع المخروطية
القطوع المخروطية وأهمية دراستها
القطع المخروطي
القطع المكافئ
انسحاب المحاور للقطع المكافئ
القطع الناقص
انسحاب المحاور للقطع الناقص
القطع الزائد
انسحاب محاور القطع الزائد
الفصل الثالث: تطبيقات التفاضل
المشتقات ذات الرتب العليا
المعدلات المرتبطة
مبرهنتا رول والقيمة المتوسطة
اختبار التزايد والتناقص للدالة باستخدام المشتقة الأولى
النهاية العظمى والنهاية الصغرى المحلية
تقعر وتحدب المنحنيات ونقط الانقلاب
اختبار المشتقة الثانية لنقط النهايات العظمى والصغرى المحلية
رسم المخطط البياني للدالة
تطبيقات عملية على القيم العظمى أو الصغرى
الفصل الرابع: التكامل
المناطق المحددة بمنحنيات
المجاميع العليا والمجاميع السفلى
تعريف التكامل
النظرية الأساسية للتكامل - الدالة المقابلة
خواص التكامل المحدد
التكامل غير المحدد
اللوغارتم الطبيعي
إيجاد مساحة المنطقة المستوية
الحجوم الدورانية
الفصل الخامس: المعادلات التفاضلية الاعتيادية
مقدمة
حل المعادلة التفاضلية الاعتيادية
الحل الخاص والعام للمعادلة التفاضلية الاعتيادية
المعادلات التفاضلية الاعتيادية من المرتبة الأولى والدرجة الأولى
بعض طرق حل المعادلات التفاضلية
الفصل السادس: الهندسة الفضائية
تمهيد
الزاوية الزوجية والمستويات المتعامدة
الاسقاط العمودي على مستوٍ
المجسمات
الفصل الأول: الأعداد المركبة
الحاجة إلى توسيع مجموعة الأعداد الحقيقية
العمليات على مجموعة الأعداد المركبة
مرافق العدد المركب
الجذور التربيعية للعدد المركب
حل المعادلة التربيعية في (c)
الجذور التكعيبية للواحد الصحيح
التمثيل الهندسي للأعداد المركبة
الصيغة القطبية Form Polar للعدد المركب
مبرهنة ديمواڤر
الفصل الثاني: القطوع المخروطية
القطوع المخروطية وأهمية دراستها
القطع المخروطي
القطع المكافئ
انسحاب المحاور للقطع المكافئ
القطع الناقص
انسحاب المحاور للقطع الناقص
القطع الزائد
انسحاب محاور القطع الزائد
الفصل الثالث: تطبيقات التفاضل
المشتقات ذات الرتب العليا
المعدلات المرتبطة
مبرهنتا رول والقيمة المتوسطة
اختبار التزايد والتناقص للدالة باستخدام المشتقة الأولى
النهاية العظمى والنهاية الصغرى المحلية
تقعر وتحدب المنحنيات ونقط الانقلاب
اختبار المشتقة الثانية لنقط النهايات العظمى والصغرى المحلية
رسم المخطط البياني للدالة
تطبيقات عملية على القيم العظمى أو الصغرى
الفصل الرابع: التكامل
المناطق المحددة بمنحنيات
المجاميع العليا والمجاميع السفلى
تعريف التكامل
النظرية الأساسية للتكامل - الدالة المقابلة
خواص التكامل المحدد
التكامل غير المحدد
اللوغارتم الطبيعي
إيجاد مساحة المنطقة المستوية
الحجوم الدورانية
الفصل الخامس: المعادلات التفاضلية الاعتيادية
مقدمة
حل المعادلة التفاضلية الاعتيادية
الحل الخاص والعام للمعادلة التفاضلية الاعتيادية
المعادلات التفاضلية الاعتيادية من المرتبة الأولى والدرجة الأولى
بعض طرق حل المعادلات التفاضلية
الفصل السادس: الهندسة الفضائية
تمهيد
الزاوية الزوجية والمستويات المتعامدة
الاسقاط العمودي على مستوٍ
المجسمات
اللوغارتم الطبيعي
تعريف اللوغارتم الطبيعي
المبرهنة الأساسية لحساب التكامل
إذا كان y=ln(3x^2+4) فأوجد dy/dx
جد ∫cosθdθ/1+sinθ
دالة اللوغارتم الطبيعي
مبرهنة دالة دالة اللوغارتم الطبيعي d/dx(e^x)=e^x
لتكن y=e^tan x فجد dy/dx
صيغة التفاضل تقودنا لصيغة التكامل
جد ∫xe^x^2 dx
إذا كان a عددا موجبا فإن a^u=e^u ln a
مبرهنة da^u/dx=a^u.du/dx ln a
جد dy/dx لكل مما يأتي y=3^2x-5
جد dy/dx لكل مما يأتي y=ln3x
جد التكاملات الآتية ∫3 0 1/x+1 dx
أثبت أن ∫4 -2 |3x-6|dx=30
f(x) دالة مستمرة على الفترة [-2,6] فإذا كان ∫6 1 f(x)dx=6 وكان ∫6 -2 [f(x)+3]dx=32 فجد ∫1 -2 f(x)dx
جد قيمة a∈R إذا علمت أن ∫a 1 (x+1/2)dx=2∫∏/4 0sex^2 x dx
إذا كان للمنحني f(x)=(x-3)^3+1 نقطة انقلاب (a,b) جد القيمة العددية للمقدار ∫b 0 f`(x)dx-∫a 0 f``(x)dx
لتكن f(x)=x^2+2x+k حيث k∈R دالة نهايتها الصغرى تساوي (-5) جد ∫3 1 f(x)dx
الإبلاغ
الإبلاغ عن خطأ
X
تسجيل الدخول بواسطة