لمتابعة التصفح يجب عليك تسجيل الدخول
دخول:
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
الجبر والهندسة الفراغية
الهندسة الفراغية الوحدة الأولى: الهندسة والقياس في بعدين وثلاثة أبعاد
1-3: ضرب المتجهات
ضرب المتجهات - الجبر والهندسة الفراغية - ثالث ثانوي
الجبر الوحدة الأولى: التباديل والتوافيق ونظرية ذات الحدين
1-1: مبدأ العد-التباديل-التوافيق
1-2: نظرية ذات الحدين بأس صحيح موجب
1-3: إيجاد الحد المشتمل على س ك من مفكوك ذات الحدين
1-4: النسبة بين حدين متتاليين من مفكوك ذات الحدين
ملخص الوحدة
تمارين عامة
اختبار تراكمي
الجبر الوحدة الثانية: الأعداد المركبة
2-1: الصورة المثلثية للعدد المركب
2-2: نظرية ديموافر
2-3: الجذور التكعيبية للواحد الصحيح
تمارين عامة
ملخص الوحدة
اختبار تراكمي
الجبر الوحدة الثالثة: المحددات والمصفوفات
3-1: المحددات
3-2: المصفوفات
3-3: حل أنظمة المعادلات الخطية باستخدام المعكوس الضربي للمصفوفة
ملخص الوحدة
تمارين عامة
اختبار تراكمي
الهندسة الفراغية الوحدة الأولى: الهندسة والقياس في بعدين وثلاثة أبعاد
1-1: النظام الإحداثي المتعامد في ثلاثة أبعاد
1-2: المتجهات في الفراغ
1-3: ضرب المتجهات
ملخص الوحدة
تمارين عامة
اختبار تراكمي
الهندسة الفراغية الوحدة الثانية: الخطوط المستقيمة والمستويات في الفراغ
2-1: معادلة المستقيم في الفراغ
2-2: معادلة المستوى في الفراغ
ملخص الوحدة
تمارين عامة
اختبار تراكمي
اختبارات عامة
الجبر الوحدة الأولى: التباديل والتوافيق ونظرية ذات الحدين
1-1: مبدأ العد-التباديل-التوافيق
1-2: نظرية ذات الحدين بأس صحيح موجب
1-3: إيجاد الحد المشتمل على س ك من مفكوك ذات الحدين
1-4: النسبة بين حدين متتاليين من مفكوك ذات الحدين
ملخص الوحدة
تمارين عامة
اختبار تراكمي
الجبر الوحدة الثانية: الأعداد المركبة
2-1: الصورة المثلثية للعدد المركب
2-2: نظرية ديموافر
2-3: الجذور التكعيبية للواحد الصحيح
تمارين عامة
ملخص الوحدة
اختبار تراكمي
الجبر الوحدة الثالثة: المحددات والمصفوفات
3-1: المحددات
3-2: المصفوفات
3-3: حل أنظمة المعادلات الخطية باستخدام المعكوس الضربي للمصفوفة
ملخص الوحدة
تمارين عامة
اختبار تراكمي
الهندسة الفراغية الوحدة الأولى: الهندسة والقياس في بعدين وثلاثة أبعاد
1-1: النظام الإحداثي المتعامد في ثلاثة أبعاد
1-2: المتجهات في الفراغ
1-3: ضرب المتجهات
ملخص الوحدة
تمارين عامة
اختبار تراكمي
الهندسة الفراغية الوحدة الثانية: الخطوط المستقيمة والمستويات في الفراغ
2-1: معادلة المستقيم في الفراغ
2-2: معادلة المستوى في الفراغ
ملخص الوحدة
تمارين عامة
اختبار تراكمي
اختبارات عامة
الضرب القياسي لمتجهين
سوف تتعلم
مصطلحات أساسية
تعلمت سابقا إجراء بعض
فكر وناقش
مثال1: إذا كان أ
ملحوظات مهمة ص124
مثال2: فأوجد كل من
تابع الضرب القياسي لمتجهين
حاول أن تحل1: إذا كان أ
تفكير ناقد: ما الحالات التي يكون فيها حاصل الضرب القياس يساوي الصفر؟
حاول أن تحل2: إذا كانت
خواص الضرب القياسي
مثال3: أوجد كلا من
حاول أن تحل3: أوجد كلا من
تعلم: الضرب القياسي لمتجهين في النظام الإحداثي المتعامد
مثال4: إذا كان
حاول أن تحل4: أوجد
تعلم: الزاوية بين متجهين
مثال5: أوجد قياس الزاوية بين المتجهين
حاول أن تحل5: أوجد
تعلم: مركبة متجه في اتجاه متجه آخر
مثال6: أوجد مركبة القوة
تعلم: استخدام الضرب القياسي لإيجاد الشغل المبذول من قوة
حاول أن تحل: الشكل المقابل يمثل
مثال7: أوجد الشغل المبذول من القوة
مثال8: أوجد الشغل المبذول من قوة الشد
حاول أن تحل7: أوجد الشغل المبذول من القوة
تعلم: الضرب الاتجاهي لمتجهين
مثال9: أوجد معيار
ملحوظات هامة
حاول أن تحل8: أوجد قياس الزاوية بين المتجهين
الضرب الاتجاهي في الإحداثيات الكارتيزية
حالة خاصة
مثال10: ثم استنتج متجه الوحدة العمودي على المستوى الذي يحوي المتجهين
خواص حاصل الضرب الاتجاهي لمتجهين
توازي متجهين
حاول أن تحل9:
تابع توازي متجهين
مثال11: أوجد قيمة كل من م. ك
المعنى الهندسي للضرب الاتجاهي لمتجهين
حاول أن تحل10: أوجد ب
مثال12: أوجد مساحة متوازي الأضلاع الذي فيه
تعلم: الضرب الثلاثي القياسي
حاول أن تحل11: أوجد مساحة المثلث الذي فيه
خواص الضرب الثلاثي القياسي
مثال13
المعنى الهندسي لحاصل الضرب الثلاثي القياسي
حاول أن تحل12: أوجد حجم متوازي السطوح الذي فيه ثلاثة أحرف غير متوازية
أكمل ما يأتي
اختر الإجابة الصحيحة من بين الإجابات المعطاة
أجب عما يأتي 12: أوجد
تمرين14: أوجد قياس الزاوية بين المتجهين في كل من الحالات الآتية
تمرين15: أوجد أ × ب في كل من الحالات الآتية
تمرين16: أوجد
تمرين17: أوجد متجه وحدة عموديا على المستوى الذي يحوي المتجهين
تمرين18: احسب مساحة المثلث د ه و في كل مما يأتي
تمرين19: احسب مساحة متوازي الأضلاع ل م ن ه في كل مما يأتي
تمرين20: أوجد حجم متوازي السطوح الذي فيه
تمرين21: في كل مما يأتي بين ما إذا كان المتجهان متوازيين أم متعامدين أم غير ذلك
الإبلاغ
الإبلاغ عن خطأ
X
تسجيل الدخول بواسطة