لمتابعة التصفح يجب عليك تسجيل الدخول
دخول:
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
الرياضيات علمي
الفصل السادس: الهندسة الإحداثية
6-6: شرط التعامد
شرط التعامد - الرياضيات علمي - رابع اعدادي
الفصل الأول: المنطق الرياضي
1-1: العبارة المنطقية
2-1: أداة الربط إذا كان فإن
3-1: أداة الربط إذا وفقط إذا
4-1: الاقتضاء
5-1: الجمل المفتوحة
6-1: تكافؤ الجمل المفتوحة
7-1: العبارات المسورة
الفصل الثاني: المعادلات والمتباينات
2-1: القيمة المطلقة
2-2: حل المعادلات التي تحتوي على مطلق
2-3: حل معادلتين آنيتين بمتغيرين
2-4: الفترات
2-5: حل المتباينة المتراجحة من الدرجة الأولى في متغير واحد
2-6: حل متباينة من الدرجة الثانية في متغير واحد
الفصل الثالث: الأسس والجذور
3-1: الأسس أعداد صحيحة
3-2: حل المعادلات الأسية البسيطة
3-3: الجذور والعمليات عليها
3-4: العددان المترافقان
3-5: الدوال الحقيقية
الفصل الرابع: حساب المثلثات
4-1: الزاوية الموجهة بالوضع القياسي
4-2: القياس الستيني والقياس الدائري للزوايا
4-3: العلاقة بين القياس الستيني والدائري للزوايا
4-4: النسب المثلثية لزاوية حادة وبعض العلاقات الأساسية
4-5: النسبة المثلثية لزاوية خاصة
4-6: دائرة الوحدة والنقطة المثلثية
4-7: التطبيقات الدائرية
4-8: استخدام الحاسبة في إيجاد قيم التطبيقات الدائرية
4-9: حل المثلث القائم الزاوية
الفصل الخامس: المتجهات
5-1: مفهوم المتجه الهندسي والجبري
5-2: المتجه المقيد
5-3: طول المتجه واتجاهه
5-4: جمع المتجهات وضربها بعدد حقيقي
5-5: إعطاء المتجه بدلالة متجهي الوحدة في المستوى
الفصل السادس: الهندسة الإحداثية
6-1: النظام الإحداثي في المستوى
6-2: المسافة بين نقطتين معلومتين
6-3: إحداثيات نقطة تقسيم معلوم من الداخل
6-4: ميل المستقيم
6-5: شرط التوازي
6-6: شرط التعامد
6-7: معادلة المستقيم
6-8: بعد نقطة معلومة عن مستقيم معلوم
الفصل السابع: الإحصاء
7-1: مقاييس النزعة المركزية
7-2: الوسط الحسابي
7-3: الوسيط
7-4: المنوال
7-5: مقاييس التشتت
الفصل الأول: المنطق الرياضي
1-1: العبارة المنطقية
2-1: أداة الربط إذا كان فإن
3-1: أداة الربط إذا وفقط إذا
4-1: الاقتضاء
5-1: الجمل المفتوحة
6-1: تكافؤ الجمل المفتوحة
7-1: العبارات المسورة
الفصل الثاني: المعادلات والمتباينات
2-1: القيمة المطلقة
2-2: حل المعادلات التي تحتوي على مطلق
2-3: حل معادلتين آنيتين بمتغيرين
2-4: الفترات
2-5: حل المتباينة المتراجحة من الدرجة الأولى في متغير واحد
2-6: حل متباينة من الدرجة الثانية في متغير واحد
الفصل الثالث: الأسس والجذور
3-1: الأسس أعداد صحيحة
3-2: حل المعادلات الأسية البسيطة
3-3: الجذور والعمليات عليها
3-4: العددان المترافقان
3-5: الدوال الحقيقية
الفصل الرابع: حساب المثلثات
4-1: الزاوية الموجهة بالوضع القياسي
4-2: القياس الستيني والقياس الدائري للزوايا
4-3: العلاقة بين القياس الستيني والدائري للزوايا
4-4: النسب المثلثية لزاوية حادة وبعض العلاقات الأساسية
4-5: النسبة المثلثية لزاوية خاصة
4-6: دائرة الوحدة والنقطة المثلثية
4-7: التطبيقات الدائرية
4-8: استخدام الحاسبة في إيجاد قيم التطبيقات الدائرية
4-9: حل المثلث القائم الزاوية
الفصل الخامس: المتجهات
5-1: مفهوم المتجه الهندسي والجبري
5-2: المتجه المقيد
5-3: طول المتجه واتجاهه
5-4: جمع المتجهات وضربها بعدد حقيقي
5-5: إعطاء المتجه بدلالة متجهي الوحدة في المستوى
الفصل السادس: الهندسة الإحداثية
6-1: النظام الإحداثي في المستوى
6-2: المسافة بين نقطتين معلومتين
6-3: إحداثيات نقطة تقسيم معلوم من الداخل
6-4: ميل المستقيم
6-5: شرط التوازي
6-6: شرط التعامد
6-7: معادلة المستقيم
6-8: بعد نقطة معلومة عن مستقيم معلوم
الفصل السابع: الإحصاء
7-1: مقاييس النزعة المركزية
7-2: الوسط الحسابي
7-3: الوسيط
7-4: المنوال
7-5: مقاييس التشتت
شرط التعامد
شرط التعامد
أحمد عبد الله
محمد حاتم
03:47
خالد جمال
00:33
سلام التميمي
00:36
صدى العميد
01:23
مصطفى نصيف
00:52
آية سعد
01:29
00:58
(0)
0
1
ارسال
شرط التعامد
برهن باستخدام الميل أن المثلث الذي رؤوسه (11) ، (104) ، (31) A هو قائم الزاوية في B ؟
اذا كانت النقط (0) (12) B ، (2-4 على استقامه واحدة جد قيمة .bER
جد ميل المستقيم المار بالنقطتين (20) ، (2-0).
لكل فقرة فيما يأتي أربع إجابات واحدة فقط منها صحيحة ، حدد الاجابة الصحيحة لكل فقرة :
جد ميل المستقيم المتوسط للمثلث ABC المار من B
إذا كانت (h ,-3) (2,3) جد قيمة h بحيث يكون
بين أن النقاط (6 , -7) (4 , -1), (2,3) على إستقامة واحدة
جد ميل العمود وميل المستقيم
بين ان الشكل ABCD متوازي اضلاع
بين ان الشكل ABCD مربع
ABC مثلث رؤوسه جد ميل العمود المرسوم من A
جد قيمة x التي تجعل المستقيم المار بالنقطتين (-9 , -2) ،(4 , X) عموداً على المستقيم المار بالنقطتين (3 , 0) (1 , 4)
بين ان الشكل الرباعي يمثل شبه منحرف متعامد القطرين
التعليقات
لم يتم إضافة أي تعليقات حتى الآن.
الرجاء
تسجيل الدخول
لكتابة تعليق
الإبلاغ
الإبلاغ عن خطأ
X
تسجيل الدخول بواسطة