لمتابعة التصفح يجب عليك تسجيل الدخول
دخول:
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
الرياضيات علمي
الفصل الخامس: المتجهات
5-5: إعطاء المتجه بدلالة متجهي الوحدة في المستوى
إعطاء المتجه بدلالة متجهي الوحدة في المستوى - الرياضيات علمي - رابع اعدادي
الفصل الأول: المنطق الرياضي
1-1: العبارة المنطقية
2-1: أداة الربط إذا كان فإن
3-1: أداة الربط إذا وفقط إذا
4-1: الاقتضاء
5-1: الجمل المفتوحة
6-1: تكافؤ الجمل المفتوحة
7-1: العبارات المسورة
الفصل الثاني: المعادلات والمتباينات
2-1: القيمة المطلقة
2-2: حل المعادلات التي تحتوي على مطلق
2-3: حل معادلتين آنيتين بمتغيرين
2-4: الفترات
2-5: حل المتباينة المتراجحة من الدرجة الأولى في متغير واحد
2-6: حل متباينة من الدرجة الثانية في متغير واحد
الفصل الثالث: الأسس والجذور
3-1: الأسس أعداد صحيحة
3-2: حل المعادلات الأسية البسيطة
3-3: الجذور والعمليات عليها
3-4: العددان المترافقان
3-5: الدوال الحقيقية
الفصل الرابع: حساب المثلثات
4-1: الزاوية الموجهة بالوضع القياسي
4-2: القياس الستيني والقياس الدائري للزوايا
4-3: العلاقة بين القياس الستيني والدائري للزوايا
4-4: النسب المثلثية لزاوية حادة وبعض العلاقات الأساسية
4-5: النسبة المثلثية لزاوية خاصة
4-6: دائرة الوحدة والنقطة المثلثية
4-7: التطبيقات الدائرية
4-8: استخدام الحاسبة في إيجاد قيم التطبيقات الدائرية
4-9: حل المثلث القائم الزاوية
الفصل الخامس: المتجهات
5-1: مفهوم المتجه الهندسي والجبري
5-2: المتجه المقيد
5-3: طول المتجه واتجاهه
5-4: جمع المتجهات وضربها بعدد حقيقي
5-5: إعطاء المتجه بدلالة متجهي الوحدة في المستوى
الفصل السادس: الهندسة الإحداثية
6-1: النظام الإحداثي في المستوى
6-2: المسافة بين نقطتين معلومتين
6-3: إحداثيات نقطة تقسيم معلوم من الداخل
6-4: ميل المستقيم
6-5: شرط التوازي
6-6: شرط التعامد
6-7: معادلة المستقيم
6-8: بعد نقطة معلومة عن مستقيم معلوم
الفصل السابع: الإحصاء
7-1: مقاييس النزعة المركزية
7-2: الوسط الحسابي
7-3: الوسيط
7-4: المنوال
7-5: مقاييس التشتت
الفصل الأول: المنطق الرياضي
1-1: العبارة المنطقية
2-1: أداة الربط إذا كان فإن
3-1: أداة الربط إذا وفقط إذا
4-1: الاقتضاء
5-1: الجمل المفتوحة
6-1: تكافؤ الجمل المفتوحة
7-1: العبارات المسورة
الفصل الثاني: المعادلات والمتباينات
2-1: القيمة المطلقة
2-2: حل المعادلات التي تحتوي على مطلق
2-3: حل معادلتين آنيتين بمتغيرين
2-4: الفترات
2-5: حل المتباينة المتراجحة من الدرجة الأولى في متغير واحد
2-6: حل متباينة من الدرجة الثانية في متغير واحد
الفصل الثالث: الأسس والجذور
3-1: الأسس أعداد صحيحة
3-2: حل المعادلات الأسية البسيطة
3-3: الجذور والعمليات عليها
3-4: العددان المترافقان
3-5: الدوال الحقيقية
الفصل الرابع: حساب المثلثات
4-1: الزاوية الموجهة بالوضع القياسي
4-2: القياس الستيني والقياس الدائري للزوايا
4-3: العلاقة بين القياس الستيني والدائري للزوايا
4-4: النسب المثلثية لزاوية حادة وبعض العلاقات الأساسية
4-5: النسبة المثلثية لزاوية خاصة
4-6: دائرة الوحدة والنقطة المثلثية
4-7: التطبيقات الدائرية
4-8: استخدام الحاسبة في إيجاد قيم التطبيقات الدائرية
4-9: حل المثلث القائم الزاوية
الفصل الخامس: المتجهات
5-1: مفهوم المتجه الهندسي والجبري
5-2: المتجه المقيد
5-3: طول المتجه واتجاهه
5-4: جمع المتجهات وضربها بعدد حقيقي
5-5: إعطاء المتجه بدلالة متجهي الوحدة في المستوى
الفصل السادس: الهندسة الإحداثية
6-1: النظام الإحداثي في المستوى
6-2: المسافة بين نقطتين معلومتين
6-3: إحداثيات نقطة تقسيم معلوم من الداخل
6-4: ميل المستقيم
6-5: شرط التوازي
6-6: شرط التعامد
6-7: معادلة المستقيم
6-8: بعد نقطة معلومة عن مستقيم معلوم
الفصل السابع: الإحصاء
7-1: مقاييس النزعة المركزية
7-2: الوسط الحسابي
7-3: الوسيط
7-4: المنوال
7-5: مقاييس التشتت
إعطاء المتجه بدلالة متجهي الوحدة في المستوى: متجه الوحدة
إذا كان (53) = ، (47) = جد + A وعبر عن الناتج بدلالة متجهي الوحدة
وعلى هذا الأساس يمكننا كتابة أي متجه بدلالة كما في الأمثلة الآتية
مثال13: إذا كان + 20 = A = T - 30 ، B جد A
مثال14: إذا كان (53) = A وكان (34) = B وكان 3 = L ، 2 = جد KA - LB ثم عبر عنه بدلالة متجهي الوحدة .
جد مقدار واتجاه كل من المتجهات الآتية موضحاً بالرسم : (-2,-2), (3,0), √3+ปี+√3 ปี,
بسط ما يأتي: 4(1-1) 2(1-1)-7(1,5) ،3 (2,-1)+4(-1, 5), 7(30, + 20). -4(2ปี ปี)
عبر عن كل من المتجهات الآتية بواسطة متجهي الوحدة .
إذا كان (x) = حيث . وكان A أي متجه بحيث E = )0.0( برهن على أن +=+=
إذا كان (0,0) = A + B - B + A أثبت أن A
عبر عن المتجهات الآتية بواسطة متجهي الوحدة ،
A=3,1). B=23) K = 3 = 2 إذا
. 2 + 3x = 5 : بحيث x إذا
الإبلاغ
الإبلاغ عن خطأ
X
تسجيل الدخول بواسطة