لمتابعة التصفح يجب عليك تسجيل الدخول
دخول:
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
المنهج السعودي
المنهج العراقي
المنهج المصري
الفصل:
1
2
الرياضيات علمي
الفصل السادس: الهندسة الإحداثية
6-8: بعد نقطة معلومة عن مستقيم معلوم
بعد نقطة معلومة عن مستقيم معلوم - الرياضيات علمي - رابع اعدادي
الفصل الأول: المنطق الرياضي
1-1: العبارة المنطقية
2-1: أداة الربط إذا كان فإن
3-1: أداة الربط إذا وفقط إذا
4-1: الاقتضاء
5-1: الجمل المفتوحة
6-1: تكافؤ الجمل المفتوحة
7-1: العبارات المسورة
الفصل الثاني: المعادلات والمتباينات
2-1: القيمة المطلقة
2-2: حل المعادلات التي تحتوي على مطلق
2-3: حل معادلتين آنيتين بمتغيرين
2-4: الفترات
2-5: حل المتباينة المتراجحة من الدرجة الأولى في متغير واحد
2-6: حل متباينة من الدرجة الثانية في متغير واحد
الفصل الثالث: الأسس والجذور
3-1: الأسس أعداد صحيحة
3-2: حل المعادلات الأسية البسيطة
3-3: الجذور والعمليات عليها
3-4: العددان المترافقان
3-5: الدوال الحقيقية
الفصل الرابع: حساب المثلثات
4-1: الزاوية الموجهة بالوضع القياسي
4-2: القياس الستيني والقياس الدائري للزوايا
4-3: العلاقة بين القياس الستيني والدائري للزوايا
4-4: النسب المثلثية لزاوية حادة وبعض العلاقات الأساسية
4-5: النسبة المثلثية لزاوية خاصة
4-6: دائرة الوحدة والنقطة المثلثية
4-7: التطبيقات الدائرية
4-8: استخدام الحاسبة في إيجاد قيم التطبيقات الدائرية
4-9: حل المثلث القائم الزاوية
الفصل الخامس: المتجهات
5-1: مفهوم المتجه الهندسي والجبري
5-2: المتجه المقيد
5-3: طول المتجه واتجاهه
5-4: جمع المتجهات وضربها بعدد حقيقي
5-5: إعطاء المتجه بدلالة متجهي الوحدة في المستوى
الفصل السادس: الهندسة الإحداثية
6-1: النظام الإحداثي في المستوى
6-2: المسافة بين نقطتين معلومتين
6-3: إحداثيات نقطة تقسيم معلوم من الداخل
6-4: ميل المستقيم
6-5: شرط التوازي
6-6: شرط التعامد
6-7: معادلة المستقيم
6-8: بعد نقطة معلومة عن مستقيم معلوم
الفصل السابع: الإحصاء
7-1: مقاييس النزعة المركزية
7-2: الوسط الحسابي
7-3: الوسيط
7-4: المنوال
7-5: مقاييس التشتت
الفصل الأول: المنطق الرياضي
1-1: العبارة المنطقية
2-1: أداة الربط إذا كان فإن
3-1: أداة الربط إذا وفقط إذا
4-1: الاقتضاء
5-1: الجمل المفتوحة
6-1: تكافؤ الجمل المفتوحة
7-1: العبارات المسورة
الفصل الثاني: المعادلات والمتباينات
2-1: القيمة المطلقة
2-2: حل المعادلات التي تحتوي على مطلق
2-3: حل معادلتين آنيتين بمتغيرين
2-4: الفترات
2-5: حل المتباينة المتراجحة من الدرجة الأولى في متغير واحد
2-6: حل متباينة من الدرجة الثانية في متغير واحد
الفصل الثالث: الأسس والجذور
3-1: الأسس أعداد صحيحة
3-2: حل المعادلات الأسية البسيطة
3-3: الجذور والعمليات عليها
3-4: العددان المترافقان
3-5: الدوال الحقيقية
الفصل الرابع: حساب المثلثات
4-1: الزاوية الموجهة بالوضع القياسي
4-2: القياس الستيني والقياس الدائري للزوايا
4-3: العلاقة بين القياس الستيني والدائري للزوايا
4-4: النسب المثلثية لزاوية حادة وبعض العلاقات الأساسية
4-5: النسبة المثلثية لزاوية خاصة
4-6: دائرة الوحدة والنقطة المثلثية
4-7: التطبيقات الدائرية
4-8: استخدام الحاسبة في إيجاد قيم التطبيقات الدائرية
4-9: حل المثلث القائم الزاوية
الفصل الخامس: المتجهات
5-1: مفهوم المتجه الهندسي والجبري
5-2: المتجه المقيد
5-3: طول المتجه واتجاهه
5-4: جمع المتجهات وضربها بعدد حقيقي
5-5: إعطاء المتجه بدلالة متجهي الوحدة في المستوى
الفصل السادس: الهندسة الإحداثية
6-1: النظام الإحداثي في المستوى
6-2: المسافة بين نقطتين معلومتين
6-3: إحداثيات نقطة تقسيم معلوم من الداخل
6-4: ميل المستقيم
6-5: شرط التوازي
6-6: شرط التعامد
6-7: معادلة المستقيم
6-8: بعد نقطة معلومة عن مستقيم معلوم
الفصل السابع: الإحصاء
7-1: مقاييس النزعة المركزية
7-2: الوسط الحسابي
7-3: الوسيط
7-4: المنوال
7-5: مقاييس التشتت
جد البعد بين المستقيمين المتوازيين
جد البعد بين المستقيمين المتوازيين
آية سعد
أحمد العراقي
09:43
سلام التميمي
02:11
12:19
(0)
0
ارسال
بعد نقطة معلومة عن مستقيم معلوم
مثال17: جد بعد النقطة عن المستقيم
جد البعد بين المستقيمين المتوازيين
جد مساحة المثلث الذي رؤوسه النقاط
ضع علامة صح إذا كانت العبارة صائية وعلامة خطأ إذا كانت العبارة خاطئة فيما يأتي: بعد نقطة الأصل عن المستقيم 3 هو 3 وحدات
جد بعد النقطة عن المستقيم 0=21
جد بعد نقطة الاصل عن المستقيم الذي ميله =1/3 ويقطع جزءا موجبا من محور الصادات طوله 4 وحدات
جد البعد بين المستقيمين المتوازيين L:8X-6Y+4=0
جد بعد النقطة (2- , 0) عن المستقيم المار بالنقطتين
جد مساحة المثلث ABC حيث
التعليقات
لم يتم إضافة أي تعليقات حتى الآن.
الرجاء
تسجيل الدخول
لكتابة تعليق
الإبلاغ
الإبلاغ عن خطأ
X
تسجيل الدخول بواسطة